
 The Introduction of Android Evo Laser

Introduction:

Android Evo Laser is a mobile application for controlling Laser device via 3.5mm Audio Jack

connected to Smartphone device .

The EvoLaser is controlled by PWM(pulse with modulated),meaning the power state of the

laser is determined by the duration of active ON period of each cycle.

 -Power On State of Laser: 18 to 84 % active ON of duty cycle.

 -Power Off State of Laser: 16% and lower active ON of duty cycle.

The workflow of Android Evo Laser app

 Audio Jack is plugged?

 yes No

 Send the Changes of Tone(mode ,power ,frequency etc).

 Communicate to Laser device with

 generated Tone

Figure1. The workflow of Android Evo Laser app

 Splash Activity

 Main Activity Error Activity

Generate Tone Service The Child Activity of Main Activity

 Laser Device

How does the Android Evo Laser app work?

Splash Activity:

This is the first activity that runs on launching app.

To control Laser device, it is necessary that phone device is connected with laser device via

audio bus.

So when Audio Jack is plugged in, the control logic goes to Main Activity, otherwise goes to

Error Activity.

Code:

public void gotoMainPage() {
 if(audioManager.isWiredHeadsetOn()) {
 Intent intent = new Intent(this, MainActivity.class);
 intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);
 finish();
 }

 else{
 Intent intent = new Intent(this, ErrorActivity.class);
 intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);
 finish();

 }

}

Main Activity:

If audio jack is plugged in, the control logic goes to Main Activity when app launches.

In this activity start GenerateToneService for communicating to Laser device.

Code:

Intent intent=new Intent(MainActivity.this,GenerateToneService.class);
 startService(intent);

And start child activities (Continuous Activity, Momentary Activity, Strobe Activity etc).

The Protocol for Generating Tone (ToneManager):

To control laser device, it is needed to make a tone signal.

In this protocol we refer the formulas as follows:

-Power On State of Laser: 18 to 84 % active ON of duty cycle.

-Power Off State of Laser: 16% and lower active ON of duty cycle.

-The Member Variable of ToneManager class.

mode:The Integer variable which indicates the tone mode. This can be one of 4 modes
(Continuous,Momentary,Strobe,Fade).

power:The Double variable which controls the strength of the laser. The means of this variable
is the duration of active On period of each cycle.

strobe_frequency: The Double variable which controls the frequency of laser (the number of
laser flash per second) in Strobe mode.

fade_frequency: The Double variable which controls the frequency of laser (the number of laser
fade in and out per second) in Fade mode.

sampling_rate: The Integer variable which define the number of sample per second. In this
project we use 44100 as the sampling_rate.

sample_position: The Integer variable which use to control the laser first need to enter 100Hz
loop. In this project we use 0~441 as the sample_position.

long_sample_position: The Double variable which is used in Strobe and Fade mode.
pressed:The Boolean variable which used in Momentary mode.

1.generate Tone in Continuous Mode

In Continuous Mode, Laser pen outputs continuous laser light.

Power will be vary from 0 to 1. If the user increases the power, the strength of laser light will be

increased.

Code:

public int generate_continuous(){

 double pulsewidth = 70;

if(this.power >= 0.01){
 pulsewidth = 80 + this.power * 290;
 }
 return 1-(2*(this.sample_position > pulsewidth?1:0));
}

Figure 2. Generating Tone in Continuous Mode

2.generate Tone in Momentary Mode

In Momentary mode, if the user pressed is true, laser light is powered on, otherwise powered

off

Code:

public int generate_pulse(){

 double pulsewidth = 70;
 if(this.power >= 0.01 && this.pressed){
 pulsewidth = 80 + this.power * 290;
 }
 return 1-(2*(this.sample_position > pulsewidth?1:0));
}

Figure 3. Generating Tone in Momentary Mode

3.generate Tone in Strobe Mode.

In Strobe mode, Laser pen outputs flash laser light.

Strobe frequency will be vary 1~10Hz. If strobe frequency is 2, laser light flash two times.

Code:

public int generate_strobe() {

 double pulsewidth = 70;

if (this.power >= 0.01) {
 pulsewidth = 80 + this.power * 290;
 double period = this.sampling_rate / (this.strobe_frequency * 100);
 double half_period = period / 2;
 if (this.long_sample_position <= half_period) pulsewidth = 70;
 if (++this.long_sample_position >= period) this.long_sample_position = 0;
 }
 return 1 - (2 * (this.sample_position > pulsewidth ? 1 : 0));
}

 Figure4. Generating Tone in Strobe Mode

4.generate Tone in Fade Mode.

Same as Strobe mode, however in this mode don’t flash laser light, only repeat fade in and out

of laser light. Fade frequency will be vary 1~5Hz.

Code:

public int generate_fade(){
 double pulsewidth = 70;
 if(this.power >= 0.01){
 double period = this.sampling_rate / (this.fade_frequency * 100);

 double half_period = period / 2;
 double ratio = 1 - Math.abs(half_period - this.long_sample_position) /
half_period;

 pulsewidth = 80 + this.power * ratio * 290;
 if(++this.long_sample_position >= period) this.long_sample_position = 0;
 }
 return 1-(2*(this.sample_position > pulsewidth?1:0));
}

GenerateToneService:

This class works as background service to generate tone and communicates to Laser device.

This implements the communication between phone device and laser device by using

AudioTrack.

AudioTrack.write(toneSignal,0,toneSignal.length);

AudioTrack.play();

If app flow runs this code, phone outputs the toneSignal to Laser Control circuit via Audio Jack

Port.

Then Laser Control Circuit (Arduino circuit) receives that signal and control the Laser Device.

The important functions of this Class are as follows:

-signal_generator();

The function which generate tone according to Tone Mode.
This function returns the value of one of 4 functions (generate_continuous(),
generate_pulse(), generate_strobe(), generate_fade()) according to the Tone Mode.

-generate_tone()

The function which save generated tones by signal_generator() and write to AudioTrack
for communication to Laser device.

-playTone()

The function which is used to start communicate to Laser device with generated tones.

-stopTone()

The function which is used to stop communicate .

-updateTone()

 The function which update tones according to the changes of Tone parameter(Tone
Mode, Power,Frequency, pressed status).
This function receives the changes of tone parameter throughout the

BroadCastReceiver from the child Activities of MainActivity.

Continuous Activity:

Figure 5. The UI screen of Continuous Activity

This activity makes the GenerateToneService work as Continuous Mode.
If user move the seekbar , the strength of Laser light will be vary.

 Code:

 public void changeValue(int value)
 {
 powerValue.setText(String.format("%d", value)+"%");
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(Constants.TONE_CHANGED_ACTION);
 broadcastIntent.putExtra("mode", 0);
 broadcastIntent.putExtra("power", (double)value/100.0);
 sendBroadcast(broadcastIntent);

 }

And if user clicks “Add To Favorites” button, app saves the tone parameter to Favorite List.

Momentary Activity:

Figure 6. The UI screen of Momentary Activity

This activity make the GenerateToneService works as Momentary Mode.
If user touch on “Pulse” button, Laser light will be Turn On

 Code:

 public void changeValue(int value)
 {
 powerValue.setText(String.format("%d", value)+"%");
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(Constants.TONE_CHANGED_ACTION);
 broadcastIntent.putExtra("mode", 0);
 broadcastIntent.putExtra("power", (double)value/100.0);
 sendBroadcast(broadcastIntent);

 }

Strobe Activity:

Figure 7. The UI screen of Strobe Activity

This activity make the GenerateToneService works as Strobe Mode.
If user move the seekbar ,send the changed Tone parameter(power,Frequency) to
GenerateToneService by using sendBroadcast function .

 Code:
 public void changeValue()
 {
 mgr.power = (double) power.getProgress() / 100.0;
 mgr.strobe_frequency = minvalue + frequency.getProgress()
 * (maxvalue - minvalue) / 100;

 current_frequency = (int) Math.round(mgr.strobe_frequency * 100);
 current_power = power.getProgress();

 frequency_value.setText(String.format("%d", current_frequency) + "Hz");
 power_value.setText(String.format("%d", current_power) + "%");

Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(Constants.TONE_CHANGED_ACTION);
 broadcastIntent.putExtra("mode", 2);
 broadcastIntent.putExtra("power",mgr.power);
 broadcastIntent.putExtra("strobe_frequency", mgr.strobe_frequency);
 sendBroadcast(broadcastIntent);
 }

And if user click “Add To Favorites” button, app saves the tone parameter to Favorite List.

Fade Activity:

 Figure 8. The UI screen of Fade Activity

This activity make the GenerateToneService works as Fade Mode.
If user move the seekbar ,send the changed Tone parameter(power,Frequency) to
GenerateToneService by using sendBroadcast function .

 Code:
 public void changeValue()
 {
 mgr.power=(double)power.getProgress()/100.0;
mgr.fade_frequency=minvalue+frequency.getProgress()*(maxvalue- minvalue)/100;

 current_frequency = (int) Math.round(mgr.fade_frequency * 100);
 current_power = power.getProgress();

 frequency_value.setText(String.format("%d", current_frequency)+"Hz");
 power_value.setText(String.format("%d", current_power)+"%");

 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(Constants.TONE_CHANGED_ACTION);
 broadcastIntent.putExtra("mode", 3);
 broadcastIntent.putExtra("power",mgr.power);
 broadcastIntent.putExtra("fade_frequency", mgr.fade_frequency);
 sendBroadcast(broadcastIntent);

 }

And if user click “Add To Favorites” button, app saves the tone parameter to Favorite List.

Microphone Activity:

Figure 9. The UI screen of Microphone Activity

This activity will load the Tone parameters which is saved in Favorites List and send the changed
Tone parameter
(mode,power,frequency) to GenerateToneService by using sendBroadcast function.

Favorite Activity:

Figure 10. The UI screen of Favorite Activity

This activity will load the Tone parameters which is saved in Favorites List and send the changed
Tone parameter
(mode,power,frequency) to GenerateToneService by using sendBroadcast function.

Morse Activity:

Figure 11. The UI screen of Morse Activity

This activity generates Morse Code from Plain Text and send generated morse code to Laser
device.

Morse code “.” corresponds to the 150ms duration of Power On in Momentary Mode.
Morse code “-” corresponds to the 450ms duration of Power On in Momentary Mode.

First convert plain Text to Morse code by using textToMorseCode() function,
And generate the command List from Morse code by using generateCommandList().
The means of command List are as follows.
If Morse code is “..- -“ , command List is (150ms Power On, 150ms Power Off, 150ms Power On,
150ms Power Off, 450ms Power On, 150ms Power Off, 450ms Power On, 150ms Power Off).

After generating command List, the logic sends the command of list one by one to
GenerateToneService by using sendBroadcast function.

